miR824-Regulated AGAMOUS-LIKE16 Contributes to Flowering Time Repression in Arabidopsis.
نویسندگان
چکیده
The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.
منابع مشابه
MicroRNA-mediated regulation of stomatal development in Arabidopsis.
The proper number and distribution of stomata are essential for the efficient exchange of gases between the atmosphere and the aerial parts of plants. We show that the density and development of stomatal complexes on the epidermis of Arabidopsis thaliana leaves depend, in part, on the microRNA-mediated regulation of Agamous-like16 (AGL16), which is a member of the MADS box protein family. AGL16...
متن کاملMicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis W OA
The proper number and distribution of stomata are essential for the efficient exchange of gases between the atmosphere and the aerial parts of plants. We show that the density and development of stomatal complexes on the epidermis of Arabidopsis thaliana leaves depend, in part, on the microRNA-mediated regulation of Agamous-like16 (AGL16 ), which is a member of the MADS box protein family. AGL1...
متن کاملSpecification of Arabidopsis floral meristem identity by repression of flowering time genes.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by direct...
متن کاملGene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C...
متن کاملRegulation of floral patterning by flowering time genes.
Floral patterning in Arabidopsis requires activation of floral homeotic genes by the floral meristem identity gene, LEAFY (LFY). Here we show that precise activation of expression of class B and C homeotic genes in floral meristems is regulated by three flowering time genes, SHORT VEGETATIVE PHASE (SVP), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), and AGAMOUS-LIKE 24 (AGL24), through dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2014